OREOS, une application pour caractériser la pollution organique dans les échantillons de sol

J. Chastanet, S. Kaskassian, J.-M. Côme

Logiciel issu d’un projet R&D cofinancé par l’ADEME Rhone-Alpes – dispositif INNOV’R avec l’appui scientifique de Michel Quintard, de l’Institut de Mécanique des Fluides de Toulouse
Contexte : les polluants organiques

- L’étude de pollution de sol est généralement basée sur l’analyse d’échantillons de sol prélevés sur site

- Comment interpréter ces résultats ?
  - en l’absence de valeurs guide
  - pour la délimitation de la zone source et sa quantification
  - dans le contexte d’une évaluation de risques (transferts) / choix des techniques de dépollution

### Chlorinated Aliphatic Hydrocarbons (mg/kg DW)

| Sample  | DW | MeC5-C8 | >C8-C10 | C10-C12 | C12-C16 | C16-C20 | CT2-C24 | CT4-C28 | CT8-C32 | CT12-C36 | CT16-C40 | CT20-C44 | CT24-C48 | CT28-C52 | CT32-C56 | CT36-C60 | CT40-C64 | CT44-C68 | CT48-C72 |
|---------|----|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| SC40    | 0.5| <0.05   | <0.20   | <0.10   | <0.10   | <0.05   | <0.20   | <0.10   | <0.10   | <0.10   | <0.10   | <0.05   | <0.10   | <0.05   | <0.05   | <0.05   | <0.05   | <0.05   | <0.05   |
| SC41    | 0.8| <0.10   | <0.10   | <0.10   | <0.10   | <0.10   | <0.10   | <0.10   | <0.10   | <0.10   | <0.10   | <0.10   | <0.10   | <0.10   | <0.10   | <0.10   | <0.10   | <0.10   | <0.10   |
| SC67    | 1.3| <0.05   | <0.05   | <0.05   | <0.05   | <0.05   | <0.05   | <0.05   | <0.05   | <0.05   | <0.05   | <0.05   | <0.05   | <0.05   | <0.05   | <0.05   | <0.05   | <0.05   | <0.05   |
| SC68    | 1.4| <0.05   | <0.05   | <0.05   | <0.05   | <0.05   | <0.05   | <0.05   | <0.05   | <0.05   | <0.05   | <0.05   | <0.05   | <0.05   | <0.05   | <0.05   | <0.05   | <0.05   | <0.05   |

---

OREOS, Outil de calcul de la Répartition de la phase Organique dans les Sols
Questions clés

• Les polluants sont-ils présents sous forme de phase organique ?
• Si oui, en quelle quantité (saturation de la phase organique) ? La phase est-elle mobile (Snapl > Sor, HCT flottant par ex.) ?
• Quel seuil de Csols définit la zone source ? -> où est la source et quel est son volume ?
• En quelle proportion sont les phases du sol (NAPL, eau, gaz, solide) ?
• Quelles sont les concentrations (de polluants) dans la nappe, l’air des sols... ?

L’objectif d’OREOS : répondre à ces questions
Présentation du logiciel

**Base de données des paramètres physico-chimiques**
- Masse molaire, densité liquide, solubilité, pression de vapeur, $K_{oc}$
  
  [130 composés parmi HC monoaromatique, chlorés, HAP, TPH, alcanes...]

**Input – Caractérisation des échantillons & analyse de sensibilité**
- Paramètres du sol : porosité, teneur en eau, teneur en carbone organique
  
  [mesurés en labo ou issu de la littérature]
- Pollution : concentrations sol (mg/kg)
  
  [mesurée en labo]

**Run – Lancement du calcul**
- Calcul de la répartition basé sur :
  - Équation d’équilibre thermodynamique
  - Équation d’état
  - Bilan de masse

**Output – Résultats et outil d’analyse**
- Masse molaire, densité liquide, solubilité, pression de vapeur, $K_{oc}$
Exemple : caractérisation d’une source

Pollution mélangée :
Monoaromatic HC
Chloroethenes
Chloroethanes
Chloromethanes
Chlorobenzenes ...

OREOS, Outil de calcul de la Répartition de la phase Organique dans les Sols
Exemple : position du NAPL

Concentrations dans les sols (mg/kg DW) - Mesures

- Csol de <LQ à 129,173 mg/kg MS
- Pollution partout ? Quel seuil ?
63 échant. sur 338 où Csol <0.1 ppm
  - Snapl de 0 to 30%
  - Source est délimitée : là où Snapl > 0, c.à.d. 48 échant.

Saturation en NAPL (%) - Calculée par OREOS avec les analyses de concentrations dans les sols

Jusqu’à 11m voire 16m ??

NAPL de 1 à 7m
Exemple: seuil d’apparition du NAPL

- Seuils # 100 mg/kg MS dans les sables & # 750 mg/kg MS dans les limons
- NAPL mobile dès Ctot > 9 500 mg/kg MS dans les sables
Exemple : délimitation 3D de la source

Remblais & limons : 1-4 m prof.

Sables fins : 4-7 m de prof.

Bilan de masse

Remblais et limons :
• 330 à 410m² : zone polluée (1-4m de prof.)
• CI-VOC: 5 à 20 tonnes
• Huile de coupe : 0.9 à 1.9 tonnes

OREOS, Outil de calcul de la RÉpartition de la phase Organique dans les Sols
Exemple : distribution / validation

Composition du NAPL / concentrations d’équilibre dans l’eau en contact avec le NAPL

**Composition du NAPL (fraction molaire)**
- HCA 1,1%
- 1,2,4-TCB 2,7%
- TCE 4,6%
- PeCA 0,07%
- 1,4-DCB 0,06%
- VC 0,02%
- 1,1,1-TCA 0,01%
- 1,3-DCB 0,01%
- DCM 0,003%

- **PCE 90%**

**Concentrations d'équilibre dans l'eau (mg/L)**
- 1,2-DCB 0,25
- PeCA 0,33
- VC 0,51
- 1,1,1-TCA 0,15
- DCM 0,53

- **PCE 135**

**Différence de prépondérance NAPL / Nappe**
(solubilité sélective des polluants du mélange)

**Validation**

Dans l’eau de nappe (zone source):
Bonne corrélation Conc. Calculées (OREOS) / Mesurées

OREOS, Outil de calcul de la Répartition de la phase Organique dans les Sols
1. Impact de la temperature sur Cw et Cgas

- Benzene / Toluene / o-Xylene = 33% each
- $\theta = 30\%, \ \theta_w = 7.5\%, \ foc = 0.01\%$

2. Apparition de NAPL influencée par la $foc$

OEOS, Outil de calcul de la Répartition de la phase Organique dans les Sols
Merci de votre attention

http://www.oreos-software.com
oreos@burgeap.fr